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The linear stability of the stationary Ekman-layer flow near a plane boundary is 
considered. Analytical formulas for the eigenfunctions are derived by a spectral 
analysis. Standard optimization algorithms are used to calculate critical points, 
maximum growth rates and neutral-stability curves. The new approach provides a 
better basis for both a linear and a nonlinear stability analysis than the well-known 
methods have done. The method may also be applied to other boundary-layer 
problems. 

1. Introduction 
The stationary Ekman-layer flow that is known to exist for sufficiently small 

Reynolds numbers changes into a time-periodic motion consisting of travelling 
parallel vortex rolls when the Reynolds number is larger than a certain critical value 
(Faller 1963). Two distinct modes of instability are observed. These were originally 
designated as type 1 and 2. The first type consists of slowly moving vortices, with 
axis orientated to the left of the geostrophic flow. In contrast, the second type moves 
rapidly and has axis orientated to the right of the geostrophic flow, and it appears 
at  a lower Reynolds number. Linear stability theory formulated in terms of an 
eigenvalue problem for a system of ordinary differential equations furnishes the 
parameter values a t  which the instabilities occur. The equations were solved by Faller 
& Kaylor (1966) and by Lilly (1966) by the use of finite differences. Iooss, Nielsen 
& True (1978) applied a Galerkin method, with cubic splines as trial functions in order 
to obtain a better approximation of the eigenfunctions, which are needed in a 
bifurcation analysis. 

As part of a broader nonlinear analysis that is in preparation, the analytical form 
of the solutions of the linearized problem has been investigated. They appear as series 
of certain complex exponential functions in connection with a recurrence formula for 
the coefficients. The series turn out to be uniformly and absolutely convergent. They 
converge fast and are easy to handle numerically. It is cheaper to solve the problem 
by these series than to solve i t  by usual numerical methods, but we do not get a priori 
information about the location of the eigenvalues. However, the stability analysis is 
formulated in a natural way through optimization problems for a transcendental 
function that is derived from the series. This formulation proved to be a profitable 
way to obtain accurate results. All previous results of interest for comparison with 
a nonlinear analysis are checked. 

The objectives of this paper are therefore first to derive analytical expressions for 
the eigenfunctions, secondly to prove their computational value, and finally to show 
that linear stability problems can successfully be treated as optimization problems. 
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2. Formulation of the problem 
The flow is described by the Navier-Stokes equations for an incompressible, viscous 

fluid in a rotating coordinate system situated such that the plane wall is described 
z=o 

I d V  P 
- = - V - - Z Q k x  V+vV2V, 
d T  P 

v -  v = 0. I 
We use the following notation: 

X, Y ,  Z Cartesian coordinates, 
T time, 
P pressure, 
V velocity vector, 
VH 
a 

P density (assumed constant), 

- total derivative, d 
dT 
k 

horizontal projection of the velocity vector, 
angular velocity of the rotation of the coordinate frame (assumed 
constant), 

unit vector in the 2-direction. 
A condition of no slip is applied at the plane boundary. A t  the upper surface situated 
infinitely high over the plane boundary, the vertical component of the velocity and 
the tangential shear stress vanish : 

1 V = O  at 2 = 0 ,  

k * V = ( k . V ) V , = O  as Z-tco. 

Replacement of the variables by their scaled counterparts brings the equations into 
dimensionless form : 

U denotes the outer mean velocity, R the Reynolds number and 6 = (v/Q)i is the 
thickness of the boundary layer. A stationary solution ( K , p b ) ,  known as the Ekman 
spiral, exists for all values of the Reynolds number; but it is known to be 
asymptotically stable only for sufficiently small Reynolds numbers : 

Vb = (1-exp(-z) cosz, exp(-z) sinz, 0 ) ,  

The linear stability equations are obtained by linearization of the Navier-Stokes 
equations about this flow. The coordinate system is rotated through some angle E 

counterclockwise around the z-axis, (x, y, z )  + ( & q ,  z) ,  and we investigate banded 
disturbances u(t, 7, z ) ,  independent of 6 .  By introduction of a stream function we can 
write 

24 = [&), -$'W ia$(z)l exp (ia(q--t)), (5 )  
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where a is the wavenumber and c the complex phase speed. The pressure is eliminated 
by cross-differentiation, and two coupled oridinary differential equations are 
obtained : 

d D E - .  
dz 

The boundary conditions are 

q5=Dq5=p=O at z = O ,  

q5, D2q5, Dp+O as - z -+oo .  

ub and vb represent the basic flow in the rotated coordinate system: 

I ub =cose-exp(-z) cos(z+e) ,  

W b  = -sine+exp(-z) sin(z+e). 

J 

(7)  

The equations define an eigenvalue problem which determined c in terms of R, a 
and 8. 

3. Construction of solutions 
The stability equations (6) are equivalent to six first-order ordinary differential 

equations. Thus there exist exactly six linearly independent solutions u,, . .., v,. The 
general solution is a linear combination of these. However, we can arrange the linear 
combination in such a way that exactly three of the linearly independent solutions, 
say v,, v,, v,, are unbounded at infinity. These can therefore be omitted. Application 
of the boundary conditions at the wall leads to three linear homogeneous equations. 
An eigensolution exists if and only if the corresponding matrix is singular. Hence we 
have a relation between c and the parameters. In  order to find six linearly independent 
solutions we rewrite (6) in the form 

(C-iaRG) v = 0, v = ($,,a), 
where 

C = (  (D2-a2)2 + iA(D2-a2) 

A = (c  + sine) aR, 

- 2D 

sin(z+e) (D2-a2)+2 cos(z+e) 
cos ( z  + e) + sin ( z  + e) 

G = exp ( - z ) (  

Since the operator G vanishes as z tends to infinity, we try to construct ul ,  u2, v3 by 
the following scheme : 

u2 

v =  Z urn, Cu,=O, Cu,=iaRGu,-,. (9) 
rn-0 

The zeroth-order equation has solutions in form of complex exponential functions. 
The characteristic equation 

(k2 - a2 + iA)2 (k2 - a2 ) + 4 ( k 2 - a 2 )  = -4a2 (10) 
10-2 
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has exactly six distinct roots (a + O ) ,  three with positive and three, k#, kit), with 
negative real part. Let these basic modes be numbered after increasing imaginary 
part. For u, we find n 

From this formula we interpret C as a mode-conserving and G as a mode-generating 
operator. We shall use a spectral notation for the calculation of anj. Starting from 
the basic mode koo, successive use of C and G creates a discrete fan of modes in the 
k-plane. A relation between the amplitudes anj and un-l,j, un-.l,j-l is provided by 

n n-i 

kn, = koo - n + i (2j - n).  I 

These equations show that we can determine the anj recurrently by using the scheme 

where 
= ((k2,j-a2)2+ih(kj-a2) 

- 2kn.j 

O . ) ,  
iaR 

Sup = - exp (is) ( - ( k2,-l,;y ; a2) + 2 
2 - 1  

iaR 
gdown = - exp ( - i s )  

2 

We have now constructed three linearly independent solutions of the form 
m n  

n-0 5-0 
ul = z C a$$ exp[(k#-n+i(2j-n))z] (1  = 1,2,3), (13) 

and we shall now investigate the convergence of these series. We therefore consider 
(12) in the limit as n tends to infinity, in order to get an upper bound for the 
numerically largest component of anj : 

When we use this upper bound to estimate the remainder of the series, we find for 
any fixed value of z 

exp ( - Nz).  
( ~ u R ) ~  
N! N! 

N N- 



Linear stability of the Ekrnan layer 287 

From these calculations we conclude that the series (13) are uniformly and 
absolutely convergent on the interval [ O , o o ] .  In order to prove that the series are 
exact solutions to (6), we only have to substitute (13) into the equations, because 
the convergence properties allow rearrangement of the summations, the operators and 
the terms. The unbounded solutions u,, v,, us can be treated in the same way. The 
relation between c and a, E ,  R is now expressed in the following way: 

det M(c, a, E ,  R) = 0, 

n-0 1-0 - 

here we have denoted the components of anj by 

4. Evaluation of the series 
We intend to use the formulas (12) and (13) as an algorithm for the three 

components of the eigenfunction and the determinant of M. Therefore the numerical 
reliability of the algorithm must be verified. This reliability is closely related to the 
rate of convergence of the series (13). For comparison with the theoretical bound (14), 
the maximum IlaNIII was calculated for different values of N .  At each N a constant 
K was determined such that 

K N  
max llaNjIlm= "!' 

1 

From table 1 i t  is seen that the theoretical bound (14) agrees well with the real rate 
of convergence, if 2aR is replaced by a smaller constant. 

1 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
25 
30 

3.19 
3.88 
9.32'41 
1.43'-01 
3.5 1 '-03 
2.39'45 
6.66'48 
1.01'-10 
9.86'-14 
6.24'-17 
2.52'-20 
1.24'-29 
8.52'40 

3.19 
3.94 
4.81 
6.48 
6.99 
7.08 
7.06 
7.06 
7.12 
7.18 
7.22 
7.23 
7.23 

9.417 56045990637 
6.344576 707 469 11 
0.350 187 867 379 144 
0.010124641 107220 
0.000067 114603708 
0.000OOO 128327 130 
0 . ~ ~ O O 0 0 8 3  538 
0.000000000000032 
0.000000000000013 
0.000000000000007 

TABLE 1.  Convergence properties of the series and the determinant. The parameter values used in 
the calculation are: 

C ,  = 0.616301969005562, ~i = 0, a = 0.316225064429603, E = -23.3261087464691°, 
R = 54.1550392499929, I = 3 in the first and second column. 
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FIGURE 1. Moduli and arguments of the eigenfunction u = ( 4 , ~ )  (-) and the three components 
ul = ( h , p 1 )  (---), u2 = (&,u2) (-.-.-.) and u3 = (@3,pQ) (...). The three linearly independent 
solutions are numbered after increasing imaginary part of the corresponding basic mode (see figure 
2). The parameter values are the ones for the critical type-2 point. The linear combination giving 
the eigenfunction is u = (-2.317-0.0843i) ul + (-0.0094+ 1.664i) u,+ u,. This eigenfunction is 
normalized such that the maximum modulus of q5 is 1 and the corresponding argument is 0. ul, uI 
and u, increase in norm to about 100 as z tends to zero. 

Since (13) allows evaluation of the fundamental matrix, a residue check is possible. 
It is convenient to measure the residue relative to the norm of the first term in the 
series (13). Numerical experiments show that the maximum residue occurs near z = 0, 
in agreement with (15), and that at least 12 out of 16 possible decimal figures (the 
machine accuracy for the IBM-3033 machine) can be obtained correctly. Thus the 
numerical evaluation of the series is a sound process. 

When e is an eigenvalue, we have 
N 

DN(c,a ,€ ,R)  det Mn(c,a, B , R )  + O  as N +  CO. 

Table 1 shows how well this limit is attained. The results show that an optimum 
truncation is achieved when the sum Z1((aN,(( becomes comparable to IIaooII times the 
machine accuracy. The computational effort involved to evaluate the determinant 
is about 20(% + + x) simple arithmetic operations on complex numbers, where 
N,,  . . . denote the indices for truncations of the respective series. 

The eigenfunction is a linear combination of ul,  u2 and v3. One of these is of inviscid 
character and dominates the eigenfunction up to a few boundary-layer thicknesses 
from the wall (see figure 1). The phenomenon is most pronounced for the $-component 
because the two inviscid $-components almost cancel each other near z = 1.8. 

Some qualitative information follows from the location of the basic modes hi;), hi:), 
hit), which depends only on a and A. The inviscid basic mode, and therefore all the 

75-0 
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FIQURE 2. Real and imaginary part of the basic modes khi), k$, and k&) are shown as functions 
of/\ = (c+sins)aRfora = 0.3(-);0.6( ......) and0.9(----);onallcurvesc, = 0. Thebasicmodes 
are roots in the characteristic polynomial (10). For the critical type-2 point we have h = 3.77, 
a = 0.316, and for the critical type-1 point h = 13.63 and a = 0.551. 

modes of the inviscid solution, depends mainly on a, while the viscous modes depend 
mainly on A (figure 2). Furthermore it is typical that the inviscid component has 
constant phase outside the boundary layer. The figure also illustrates the non- 
coincidence of the three basic modes - a precondition for the validity of (13). 

5. Linear stability analysis through optimization 
Since we have an algorithm for the evaluation of the determinant, it is obvious 

that the stability analysis should be formulated through optimization problems. For 
the solution of such problems there exist efficient algorithms, which require only a 
few evaluations of the criteria function. The convergence is usually rapid in the 
neighbourhood of a solution; hence it is economical to achieve a high accuracy. 
Furthermore, good global convergence properties of the methods allow rough initial 
guesses. 

The growth rate is eliminated at once by putting ct = 0. In  order to find a 
neutral-stability point, two of the parameters, e.g. a and B ,  are fixed at some 
reasonable values, and the absolute square of the determinant is minimized in order 
to find a zero. For this purpose a modified Marquardt algorithm (Powell 1970), which 
does not require derivatives, is used. There is no guarantee that the point belongs 
to the lowest eigenstate. However, experience shows that i t  is usually the case. 
Typically 3 0 4 0  evaluations of the determinant are necessary to find a neutral point 
starting with values that may be a factor 2 off from the solution. The critical point 
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Wave type R acr 2nla E Reference 

Faller & Kaylor (1966) - 2 55 24 - 15' 

Lilly (1966) 

Iooss et aZ.( 1978) 
Present paper 

1 1  1 0'-1 2' 
2 55 0.187 21 - 20' 
1 110 0.050 11.9 7.5' 

1 118 - 

2 54.2 0.195 19.88 -23.3' 
2 54.15504 0.19489 19.869 -23.3261' 

7.202 1' 1 112.75847 0.05182 11.397 

TABLE 2. A summary of theoretical results for the Ekman instability 

of the eigenstate is determined by minimization of R under the constraint that the 
determinant vanishes. Here an algorithm developed by Powell (1978) for nonlinear 
constrained optimization applies. It is most successful when i t  is applied to starting 
points that almost fulfil the constraint. The critical points obtained are listed in table 
2 together with some existing theoretical results from the literature. 

Near the critical points, aR/&, aR/aa and aR/ac, are very small; therefore R can 
be found with a higher precision tham the other parameters. Starting from different 
points, 12 digits of R and half as many on c,, a and E could be reproduced. The 
parameter values for which table 1 is calculated correspond to the critical type-2 
point, and it is seen that the constraint is actually satisfied. 

The maximum growth rate for a given value of R can be found by maximizing aci 
subject to the constraint that the determinant vanishes. Thus we have an optimization 
problem which depends on a parameter R. A continuation procedure combined with 
the above algorithm can be applied to follow the maximum growth rate as R increases 
above a critical value. The results are shown in figure 3. 

On the surface of neutral stability, i.e. the surface in the ( R ,  a, €)-space along which 
ci vanishes, contours of constant R are found by another continuation procedure. The 
arclength is introduced as a new parameter, and at fixed values of this parameter 
we search for a zero of the determinant along a line approximately orthogonal to the 
contour. For that purpose the modified Marquardt algorithm is used. Steps in the 
arclength are taken along the Euler chord and controlled by estimating the curvature. 
The least-square procedure is halted when the L, norm of the gradient of square sum 
becomes less than The value of the determinant is usually of order 10-12-10-15 
when the calculations end. Typically eight to ten evaluations of the determinant are 
needed per point on the contour. Figure 4 shows some representative contours of the 
neutral-stability surface. 

The present results (figures 3 and 4) are in agreement with those of Lilly. However, 
they are more accurate and calculated in a qualitatively different way. Lilly's 
calculations are more complicated. He first finds c = c,+aci as a function of the 
parameters R, a and E .  Then the neutral-stability surface can be computed from the 
equation 

ci(R, a, E )  = 0. 

The use of standard numerical methods for eigenvalue problems dictates that 
procedure. In contrast, the present method involves only one transcendental equation 

det M ( R ,  a, E ,  c,) = 0. 
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FIQURE 3. Maximum growth rate aci and the corresponding parameter values c,, a and E 
as functions of R are shown for both types of instabilities. 

6. Discussion 
The essential point of the approach described in this paper is that  the linearly 

independent solutions of the problem (6) can be constructed as rapidly converging 
series (13) by a simple recurrence technique (12). 

These analytical formulas, which involve little more than simple arithmetic 
operations on complex numbers, form a profitable basis for a numerical solution of 
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FIQURE 4. (a )  The neutral-stability surface characterized by contours of constant R. The Ekman 
spiral is unstable to perturbations corresponding to parameter values inside the contours. If the 
parameter values for a perturbation lie outside the contours the perturbation will decay. The critical 
point is marked by (+ )  for the type-2 instability and by ( x ) for the type-1 instability. ( b )  The 
values of the phase velocity corresponding to the neutral stability curves shown in (a) .  

the stability problem, especially because the determination of the critical points, the 
neutral-stability surface, etc., naturally fall into the framework of numerical 
optimization algorithms, as shown in $5.  

Before we discuss the applicability of the techniques to other problems, it is useful 
to recall tne cnaracterlstlc teatures 01 the present problem (6 ) .  First of all there is 
only one independent variable z and the problem is defined on a semi-infinite interval. 
The coefficients in the equation have a special form ; they are constants or decaying 
complex exponential functions or a combination of both. Finally the problem is linear, 
homogeneous and it defines an implicit relationship between the parameters R, u, E ,  c, 
and ci. 
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For a stability problem defined on a bounded interval, the basic solution will 
typically have a boundary layer near each end of the interval; therefore the 
coefficients will contain both growing and decaying exponential terms. This makes 
it impossible to find a recurrence formula based on decaying exponential functions. 
However, a recurrence formula in terms of orthogonal polynomials might in some cases 
be obtained easily, e.g. in the case of the Orr-Sommerfeld equation for the plane 
Poiseuille flow. Another approach to this problem is given by Roesner (1979). 

The presented technique would probably involve too much computation if 
applied to a semi-infinite problem where the coefficients do not have the form 
described above. 

All the parameters R, a, E ,  c, and ci enter the computation principally on equal 
terms, so it is not significant whether (6) is an eigenvalue problem or not. A linear 
but inhomogeneous problem can be treated by the same technique because the 
fundamental matrix for the homogeneous problem can be found. Even some strongly 
nonlinear problems may be handled by a recurrence technique of the present type. An 
example is the equations describing the similarity solution to the problem of a 
rotationally symmetric flow above an infinite rotating disk. 

The nonlinear stability analysis for the Ekman layer, as given by Iooss et al. (1970), 
is valid only in the neighbourhood of the critical point. It can be shown that a 
nonlinear extension of the present approach does not have such a restriction. Details 
of this approach are planned for a future paper. 

I want to thank Dr H. B. Nielsen and Dr H. True for their suggestions and critical 
comments. I also like to thank the referees and Dr N. Arley for a useful criticism. 
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